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Cahn-Hoffman capillarity vector thermodynamics for liquid crystal interfaces
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The classical Cahn-Hoffman capillarity vector formalism for anisotropic interfaces, widely used to analyze
capillary and surface patterning processes in metallurgical systems, is applied to nematic liquid crystalline
interfaces. The nematic capillarity vector is derived and expressed in terms of nematic surface energies.
Expressions for surface tension forces on surface line elements are derived and shown to include the usual
tangential forces as well as normal forces driven by surface tension anisotropy. The connections between
interfacial rotational effects, surface tension anisotropy, and bending stresses are established. The vector for-
malism is shown to be a tractable and simple method to analyze capillarity processes in nematic liquid crystals.
The application of the formalism to a straight nematic triple line shows that the interface configuration should
be such that the projection of the sum of the three capillarity vectors on a plane normal to the contact line
vanishes.
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I. INTRODUCTION

The surface physics of nematic liquid crystals is curren
an active area of research@1–6# since many applications o
liquid crystalline materials involve multiphase system
where interfaces play significant roles. Interfacial orientat
phenomena and orientational transitions in well-defined
ometries are well characterized experimentally@1–3# and
theoretically @4–8#. On the other hand, deforming inte
phases and shape characterization are less characterized
paper deals with capillarity models of interfacial forces th
drive shape determination in anisotropic nematic liquid cr
tals ~NLCs! materials. Examples of applications of the ca
illarity models include determination of contact angles, dro
let shapes, and triple line phenomena. Although static
dynamical interfacial models for NLCs have been presen
@4–14#, there is a need to formulate simple and more tr
table models. This paper presents a capillarity model ba
on the widely used Cahn-Hoffman formalism of capillari
for anisotropic surfaces@14#. Since the Cahn-Hoffman for
malism was developed for anisotropic surfaces, it follo
that the formalism is also applicable to anisotropic NLC
The main objectives of this paper are~1! to adapt the widely
used Cahn-Hoffman formalism to NLCs surfaces and in
faces,~2! to establish the correspondence between the n
atic Cahn-Hoffman equations and the classical interfa
mechanics of NLCs presented in@12,13#, and~3! to show the
usefulness of the approach by analyzing the interface c
figuration at a straight triple line junction. The organizati
of this paper is as follows. Section II presents the main d
vations and results of the Cahn-Hoffman equations, Sec
presents the derivation of the nematic Cahn-Hoffman eq
tions, Sec. IV presents the correspondence between the
atic Cahn-Hoffman equation and the surface stress te
equation presented in@12,13#, Sec. V presents an applicatio
of the Cahn-Hoffman equations to the nematic triple li
junction, and Sec. VI presents the conclusions. In what
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lows we refer only to surfaces but the model applies equ
to interfaces.

II. THE CAHN-HOFFMAN CAPILLARITY VECTOR
FOR ANISOTROPIC SURFACES

This section summarizes the Cahn-Hoffman formalism
given in @14#. For anisotropic systems, the surface free e
ergy densityg is a function of the surface unit norma
k:g(k). The capillarity vectorj(k) is defined by the gradien
of the scalar fieldrg:

j~k!5“~rg!, ~1a!

r5rk, ~1b!

wherer is the magnitude of surface position vectorr . Noting
the dependencej(k), the gradient ofrg yields

d~rg!5“~rg!•dr , ~2a!

rdg1gdr5j•d~rk!5r j•dk1j•kdr, ~2b!

and therefore

j'5j•kk5gk, ~3a!

dg5j•dk. ~3b!

Using Eq.~3b! it follows that

j•
dk

du
5

dg

du
, ~4!

whereudku5du is a small rotation angle. Since the unit ta
gent vector is given byt5dk/du, it follows that ji5j•t
5dg/du. The selected tangential component of the capill
ity vectorj is the one that maximizes the increase of surfa
energy with rotation, and hence
©2002 The American Physical Society04-1
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ji5j•I s5S dg

du D
max

t0 , ~5!

where t0 is the unit tangent vector along whichdg/du has
the maximum rate of increase. For anisotropic surfaces th
is a principal orthogonal coordinate frame (t0 ,b0), and the
rotation of the unit surface normalk aroundb0 produces the
maximum increase in surface energy. The principal fram
selected by the main anisotropic axes of the surface. An
tropic surfaces can change surface energy by dilation an
rotation. Figure 1 shows an element of areaA5A•k and
surface unit normalk that undergoes expansion and rotatio
Sinceg is a function ofk, the surface energyg can be in-
creased by expansion and by rotation ofk. Figure 2 shows
the components ofj, their magnitudes, and the princip
frame (t0 ,b0). Figure 3 shows a schematic of the capillar

FIG. 1. Schematic of a surface patch indicating that the t
modes of surface energy increase:~a! dilation, increase of surface
areaA; ~b! rotation, tilt of area vectorA. Adapted from@14#.

FIG. 2. Schematic of the capillarity vectorj, its normalj' , and
tangential componentsji , and principal surface coordinate fram
(t0 ,b0). Adapted from@14#.
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vectorsj and 2j, and the normal2j' and tangential2ji

components of2j. The vector2j represents the surfac
force acting on the area vectorA tending to shrink (2j')
and rotate (2ji) the surface. For isotropic surfaceji50 and
no rotational effects appear.

The capillarity vectorj is needed to compute the surfac
tension force densitys. The surface tension force per un
lengths acting on a line element oriented along a unit ta
gent vectorl is s5j3 l, from which the following tangential
and normal components are obtained:

si5j'3 l5g~k3 l!5gn, ~6a!

n5k3 l, ~6b!

s'5ji3 l5S dg

du D
max

~ t03 l!. ~7!

Sincen5k3 l for any l, the magnitude of the tangential su
face forces i is alwaysg. On the other hand, the norma
surface forces' depends on the vectort03 l. Thus s'50
for t0i l ands'5(s')max for t0' l.

III. THE CAHN-HOFFMAN CAPILLARITY VECTOR
FOR NEMATIC SURFACES

For a NLC surface the nematic ordering is defined by
three-component orientation vector known as the directon
5n(r ), wheren•n51, r5rk is the surface position vector
andk is the surface unit normal, as before. A useful deco
position of the surface director field into tangential and n
mal components isni5I s•n and n'5kk•n, where I s5I
2kk is the 232 unit surface dyadic, andI is the 333
volumetric unit tensor. To develop the Cahn-Hoffman cap
larity vector for nematic surfaces we use the well-know
Rapini-Papoular surface free energy densityg given by@15#

o

FIG. 3. Schematic of the effect of the capillarity vector2j and
its components on the surface area vectorA. The normal componen
tends to shrink the area, while the tangential components tend
rotate the area vector to reduce surface energy. Adapted from@14#.
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FIG. 4. Schematic of the main
vectors in the nematic Cahn
Hoffman vector thermodynamics
for ~a! planar easy axis (2dg/du
.0) and ~b! homeotropic easy
axis (2dg/du,0). The principal
surface frame (t0 ,b0) is selected
by the director orientation.
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g~n•k,T!5g0~T!1gan~n•k,T!,
~8!

gan~n•k,T!5
g2

2
~T! @n•k#2,

whereg0 is the isotropic contribution andgan is the aniso-
tropic, anchoring energy, contribution. Higher order expa
sions are easily incorporated into Eq.~8!, but the present
expression suffices for the scope of this paper. To find
nematic capillarity vectorj we use definition~1!:

j~n,k!5“@rg~k!#, ~9a!

r5rk, ~9b!

where the directorn in the surface energy is kept constan
g(k). Computing the gradient ofrg using r 5r (r ,k) andk
5k(r ) gives

j~n,k!5“@rg~k!#5g
]r

]r
1r

dg

dr
5gk1I s•

dg

dk
, ~10!

where the following results have been used:

]r

]r
5k, ~11a!

dg

dr
5I s•

dg

dk
•

]k

]r
5I s•

dg

dk S 1

r D . ~11b!

Thus the components of the capillarity vector for nema
surfaces and interfaces are

j'5gk, ji5I s•
dg

dk
5~ I s•n!

dg

d~n•k!
5g8ni , ~12!

whereg85dg/d(n•k). To putji in the Cahn-Hoffman form
we let u be the angle between the unit normalk and the
directorn, and get

j i5I s•
dg

dk
5S dg

du D
max

t0 , ~13a!
02170
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S dg

du D
max

5S 2
dg

du D , ~13b!

t05
ni

uniu
. ~13c!

Thus the maximum rate of increase ofg is just2dg/du, and
the selected tangential vectort0 is the tangential unit vecto
along the surface projection of the director:ni . In nematic
surfaces the principal frame (t0 ,b0) is defined by the inter-
section of thek-n plane and the surface. Thus nematic s
faces may decrease the surface energy by contraction o
rotation of the unit normal around an axis that is perpendi
lar to the surface projection of the director. The nematic s
face behavior is isotropic only if

ji5ni

dg

d~n•k!
50, ~14!

which is possible whenni50 or when dg/@d(n•k)#50.
Whenn is parallel tok, the surface is isotropic. The directo
n* corresponding to the stable extrema ofg are known as the
easy axes and are~i! planar,g2.0, ni* 51; and~ii ! homeo-
tropic, g2,0. Figure 4~a! showsk, n, t0 , b0 , j, 2j i vectors
for a planar easy axis. Rotation ofk aroundb0 in the direc-
tion imposed by2j i gives the fastest rate of decrease
anchoring energy; in this case2dg/du.0. Figure 4~b!
showsk, n, t0 , b0 , j, 2j i vectors for a homeotropic eas
axis. Rotation ofk aroundb0 in the direction imposed by
2j i gives the fastest rate of decrease in anchoring energ
this case2dg/du,0.

For a nematic surface the components of the surface
sion force per unit length,s, acting on a line element ori
ented along a unit tangent vectorl are

si5j'3 l5g~k3 l!5gn, ~15!

s'5ji3 l5
dg

d~n•k!
ni3 l. ~16!

Thus the normal surface tension force per unit length ac
on a line oriented alongl is zero only if ji50 or if nii l.
Barring these possibilities, a line on a nematic surface
4-3
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FIG. 5. ~a! Schematic of the
bending stress cylinderTb in rela-
tion to the main surface vector
and main frame (t0 ,b0). ~b! Sche-
matic of the single principal bend
ing stress on a surface eleme
oriented along the principal frame
(t0 ,b0). ~c! Schematic of the two
bending stresses on a surface e
ment oriented along a nonprinci
pal frame~t,b!.
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subjected to a normal force, unlike isotropic surfaces. T
normal force plays a role in the balance of forces at con
lines and triple lines, where if one of the intersecting surfa
is nematic, the classical Neumann tangential capillary ve
equation must be augmented to include the normal ve
force s' @12#.

IV. CORRESPONDENCE OF THE CAHN-HOFFMAN
CAPILLARITY VECTOR AND THE ELASTIC SURFACE

STRESS TENSOR

The previous model of interfacial nematostatics@12,13# is
based on the elastic surface stress tensorT. This fundamental
quantity defines the capillary pressurepc , pc52(“•T)•k,
and the surface tension forces on a surface line alongl:s
5n•T, where n' l. The expression of the elastic surfa
stress tensorT is found basically by noting thatg5g(k) and
by using the identityT5I s•T. The surface elastic stress te
sor T is given by the usual 232 symmetric interfacial ten-
sion contributionTn ~normal stresses! and the 233 aniso-
tropic contributionTb ~bending stresses!:

T5Tn1Tb, Tn5gI s , Tb52I s•F]g

]k
kG52g8nik.

~17!

Comparing Eqs.~12!, ~13!, and ~17! we find that the corre-
spondence between the surface stress tensorT and the Cahn-
Hoffman capillarity vectorj is
02170
is
ct
s

or
or

T5j•C, ~18a!

C5kI s2I sk, ~18b!

Tn5j'I s , Tb52jik5
dg

du
t0k. ~18c!

The bending coefficientdg/du is the fastest rate of decreas
in anchoring energy, and in the principal frame,Tb has only
one component. Figure 5~a! shows the bending stress cylin
der,k, n, t0 , b0 , andudg/duu. The arrows denote the direc
tion and magnitude of the bending stresses acting on a
face patch whose orthogonal frame is any arbitra
orthogonal~t,b!. The magnitude of the bending stress at a
point on the circle is

t•Tb
•k5

dg

du
~ t•t0!5

dg

du
cosw, ~19!

wherew is the angle betweent0 andt. Figure 5~b! shows that
when the frame is (t0 ,b0) there is only one component~prin-
cipal bending stress of magnitudeudg/duu! acting on the
surface direction normal tot0 . Figure 5~c! shows that for any
other ~t,b! frame there are two bending stress compone
whose magnitudes depend on the rotation angle between
principal frame and the~t,b! frame.
4-4
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V. APPLICATION OF CAPILLARY VECTOR
THERMODYNAMICS: INTERFACE CONFIGURATION

AT TRIPLE LINES

The interface configuration at the junction of three fl
fluid isotropic interfaces, characterized by interfacial te
sions $g ( i )%; i 51, 2, 3 is given by the Neumann equatio
@16#

(
i

si
~ i !50, ~20a!

si
~ i !5j'

i 3 l5g~ i !~k~ i !3 l!5g~ i !n~ i !, ~20b!

where no line tension energy, long range, and surf
anisotropies effects are taken into account, andl is the unit
vector along the straight triple line. In this case all the forc
at the triple line are tangential to the three interfaces. De
ing the three angles that span each phase asÃ ( i ); i 51, 2, 3,
whereÃ (1) is the dihedral angle limited by interface 2 and
gives the interface configuration equation

g~1!

sinÃ~1! 5
g~2!

sinÃ~2! 5
g~3!

sinÃ~3! . ~21!

If the three phases are anisotropic, the generalization of
Neumann equation is@14#

(
i

s~ i !50,

s~ i !5j ~ i !3 l5j'
~ i !3 l1j i

~ i !3 l5g ~ i !n~ i !1j i
~ i !3 l.

Assuming all three flat interfaces have nematic ordering,
configuration at the straight triple line, neglecting any lo
range contributions, is given by
,
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i

s~ i !50,

~22!
s~ i !5j ~ i !3 l5g~ i !n~ i !1j i

~ i !3 l5g~ i !n~ i !

1
dg~ i !

d~n~ i !
•k~ i !!

~ni
~ i !3 l!.

Introducing the junction sum of capillary vectorsZ,

Z5j ~ i !1j ~2!1j ~3!, ~23!

it follows that the nematic configuration obeys

Z•I15~j~1!1j~2!1j~3!!•I150, I15I2 ll , ~24!

which is the generalization of the Neumann equation
nematic triple lines.

VI. CONCLUSIONS

In summary, the Cahn-Hoffman capillarity vector therm
dynamic formalism for anisotropic surfaces has been ada
to nematic liquid crystal surfaces, and its connection with
classical stress tensor model has been established. The C
Hoffman vector formalism offers a clear and tractable me
odology to analyze capillarity forces in nematic surfac
The existence of rotational forces and their connection
gradients of anchoring energy and bending stresses h
been established. The potential minimization of anchor
energy leads to surface rotations and bending stresses.
nematic Cahn-Hoffman capillarity vector is an efficient to
to analyze shape selection and surface patterning proce
in liquid crystals. The application of the formalism to
straight nematic triple line shows that the interface config
ration should be such that the projection of the sum of
three capillarity vectors on a plane normal to the contact l
vanishes@16#.

ACKNOWLEDGMENT

This work was supported by the Air Force Office of Sc
entific Research, Mathematical and Space Science Prog
under Grant No. F49620-00-1-0341.
@1# A. A. Sonin, The Surface Physics of Liquid Crystals~Gordon
and Breach, Amsterdam, 1995!.

@2# B. Jerome, inHandbook of Liquid Crystals, edited by D. De-
mus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill~Wiley-
VCH, Weinheim, 1998!, Vol. 1.

@3# H. Yokoyama, inHandbook of Liquid Crystal Research, edited
by P. J. Collins and J. S. Patel~Oxford University Press, New
York, 1997!, Chap. 6, p. 179.

@4# T. J. Sluckin and A. Poniewierski, inFluid Interfacial Phenom-
ena, edited by C. A. Croxton~Wiley, Chichester, 1986!, Chap.
5.

@5# S. Faetti, inPhysics of Liquid Crystalline Materials, edited by
I.-C. Khoo and F. Simoni~Gordon and Breach, Philadelphia
1991!, Chap. XII, p. 301.

@6# E. G. Virga, Variational Theories for Liquid Crystals~Chap-
man and Hall, London, 1994!.
@7# A. K. Sen and D. E. Sullivan, Phys. Rev. A35, 1391~1987!.
@8# G. Barbero and G. Durand, inLiquid Crystals in Complex

Geometries, edited by G. P. Crawford and S. Zumer~Taylor
and Francis, London, 1996!, p. 21.

@9# J. T. Jenkins and P. J. Barrat, Q. J. Mech. Appl. Math.27, 111
~1974!.

@10# J. L. Ericksen, inAdvances in Liquid Crystals, edited by G. H.
Brown ~Academic, New York, 1979!, Vol. 4, p. 1.

@11# C. Papenfuss and W. Muschik, Mol. Mater.2, 1 ~1992!.
@12# A. D. Rey, J. Chem. Phys.113, 10 820~2000!.
@13# A. D. Rey, Phys. Rev. E61, 1540~2000!.
@14# D. W. Hoffman and J. W. Cahn, Surf. Sci.31, 368 ~1972!.
@15# A. Rapini and M. Papoular, J. Phys. Colloq.C4, 54 ~1969!.
@16# D. A. Edwards, H. Brenner, and D. T. Wasan,Interfacial

Transport Processes and Rheology~Butterworth-Heinemann,
Stoneham, MA, 1991!.
4-5


