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Cahn-Hoffman capillarity vector thermodynamics for liquid crystal interfaces
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The classical Cahn-Hoffman capillarity vector formalism for anisotropic interfaces, widely used to analyze
capillary and surface patterning processes in metallurgical systems, is applied to nematic liquid crystalline
interfaces. The nematic capillarity vector is derived and expressed in terms of nematic surface energies.
Expressions for surface tension forces on surface line elements are derived and shown to include the usual
tangential forces as well as normal forces driven by surface tension anisotropy. The connections between
interfacial rotational effects, surface tension anisotropy, and bending stresses are established. The vector for-
malism is shown to be a tractable and simple method to analyze capillarity processes in nematic liquid crystals.
The application of the formalism to a straight nematic triple line shows that the interface configuration should
be such that the projection of the sum of the three capillarity vectors on a plane normal to the contact line
vanishes.

DOI: 10.1103/PhysReVvE.66.021704 PACS nunier61.30.Dk, 61.30.Hn, 68.05.Cf

[. INTRODUCTION lows we refer only to surfaces but the model applies equally
to interfaces.
The surface physics of nematic liquid crystals is currently
an active area of researgh—6] since many applications of Il. THE CAHN-HOFEMAN CAPILLARITY VECTOR
liquid crystalline materials involve multiphase systems, EOR ANISOTROPIC SURFACES

where interfaces play significant roles. Interfacial orientation . ] . )
phenomena and orientational transitions in well-defined ge- This section summarizes the Cahn-Hoffman formalism as

ometries are well characterized experimentdfly-3] and ~ given in[14]. For anisotropic systems, the surface free en-
theoretically [4—8]. On the other hand, deforming inter- €rgy densityy is a function of the surface unit normal
phases and shape characterization are less characterized. Thig (k). The capillarity vectog(k) is defined by the gradient
paper deals with capillarity models of interfacial forces thatof the scalar field y:

drive shape determination in anisotropic nematic liquid crys-

tals (NLCs) materials. Examples of applications of the cap- &Kk)=V(ry), (1a
illarity models include determination of contact angles, drop-
let shapes, and triple line phenomena. Although static and r=rk, (1b)

dynamical interfacial models for NLCs have been presented

[4-14), there is a need to formulate simple and more tracawherer is the magnitude of surface position vectoiNoting
table models. This paper presents a capillarity model basethe dependencé(k), the gradient of y yields

on the widely used Cahn-Hoffman formalism of capillarity

for anisotropic surfacegl4]. Since the Cahn-Hoffman for- d(ry)=V(ry)-dr, (2a)
malism was developed for anisotropic surfaces, it follows
that the formalism is also applicable to anisotropic NLCs. rdy+ ydr=£ d(rk)=r& dk+ & kdr, (2b)

The main objectives of this paper arB to adapt the widely

used Cahn-Hoffman formalism to NLCs surfaces and inter4ng therefore

faces,(2) to establish the correspondence between the nem-

atic Cahn-Hoffman equations and the classical interfacial & =& kk=9k, (33

mechanics of NLCs presented[it2,13, and(3) to show the

usefulness of the approach by analyzing the interface con-

figuration at a straight triple line junction. The organization

of this paper is as follows. Section Il presents the main deri- . .

vations and results of the Cahn-Hoffman equations, Sec. ”psmg Eq.(3D) it follows that

presents the derivation of the nematic Cahn-Hoffman equa-

tions, Sec. IV presents the correspondence between the nem- . % _ d_”

atic Cahn-Hoffman equation and the surface stress tensor do de¢’

equation presented 12,13, Sec. V presents an application

of the Cahn-Hoffman equations to the nematic triple linewhere|dk|=d#@ is a small rotation angle. Since the unit tan-

junction, and Sec. VI presents the conclusions. In what folgent vector is given by=dk/dé, it follows that §=§-t
=dvy/d@. The selected tangential component of the capillar-
ity vector & is the one that maximizes the increase of surface

*FAX: (514) 398-6678. Email address: alejandro.rey@mcgill.ca energy with rotation, and hence

dy= ¢ dk. (3b)
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A=Ak FIG. 3. Schematic of the effect of the capillarity vectog and
. o its components on the surface area veétor he normal component
moglei.oﬁlsfr(fzgszgﬁ:(;rg; ?n:rlézr;;)? dﬂgﬁ?:ﬂ"}gﬁigg% g}a;ut:flzcgwotends to shrink the area, while the tangential components tends to
) . ) ' r he area vi rtor rf nergy. A
areaA; (b) rotation, tilt of area vectoA. Adapted from[14]. otate the area vector to reduce surface energy. Adapted[ftajn

d vectors¢ and —§, and the normal & and tangential- §,
§:§.|S:<_7) to, (5)  components of-§. The vector—§ represents the surface
do/ . force acting on the area vectér tending to shrink ¢ £,)
and rotate { &) the surface. For isotropic surfagg=0 and
wheret, is the unit tangent vector along whichy/d# has  no rotational effects appear.
the maximum rate of increase. For anisotropic surfaces there The capillarity vectorf is needed to compute the surface
is a principal orthogonal coordinate framg,oy), and the tension force densityr. The surface tension force per unit
rotation of the unit surface normklaroundb, produces the lengtho acting on a line element oriented along a unit tan-
maximum increase in surface energy. The principal frame igent vectol is o= &XI, from which the following tangential
selected by the main anisotropic axes of the surface. Aniscand normal components are obtained:
tropic surfaces can change surface energy by dilation and by
rotation. Figure 1 shows an element of akaA-k and o= £ X1=y(kx1)=yp, (6a)
surface unit normak that undergoes expansion and rotation.
Since y is a function ofk, the surface energy can be in-

creased by expansion and by rotationkofFigure 2 shows v=kXl, (6b)
the components o, their magnitudes, and the principal
frame (y,bg). Figure 3 shows a schematic of the capillarity dy
o =§Xl= ﬁ) (toX1). (7)
g(k) max

Sincev=kX| for any|, the magnitude of the tangential sur-
face forceo is alwaysvy. On the other hand, the normal
surface forceo, depends on the vectagx|. Thuso, =0
for tolll and o/, = (0 ) may fOr toL 1.

IIl. THE CAHN-HOFFMAN CAPILLARITY VECTOR
FOR NEMATIC SURFACES

M e

For a NLC surface the nematic ordering is defined by the
to// three-component orientation vector known as the director,
/\ =n(r), wheren-n=1, r=rk is the surface position vector,
andk is the surface unit normal, as before. A useful decom-
position of the surface director field into tangential and nor-
mal components iy =Is-n and n, =kk-n, wherel;=I
—kk is the 2x2 unit surface dyadic, andl is the 3x3
FIG. 2. Schematic of the capillarity vectdrits normalg, , and ~ Volumetric unit tensor. To develop the Cahn-Hoffman capil-
tangential component§, and principal surface coordinate frame larity vector for nematic surfaces we use the well-known
(tg,bg). Adapted from[14]. Rapini-Papoular surface free energy densitgiven by[15]
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FIG. 4. Schematic of the main
vectors in the nematic Cahn-
Hoffman vector thermodynamics
for (a) planar easy axis{dy/d@
v >0) and (b) homeotropic easy

- axis (—dy/d6#<0). The principal
surface frame tg,by) is selected
by the director orientation.

(@

y(N-K,T)=yo(T) + yadn-k,T), dy\, [ dy
® (d_e) ‘( 3 (30
Yarln-k,T)= Z2(T) [n-KI2 )
to:ﬁ. (130
Il

where vy, is the isotropic contribution ang,, is the aniso-
trppic, anchori.ng energy, contr!bution. Higher order expan-nus the maximum rate of increasepis just—dy/dé, and
sions are easily incorporated into E@), but the present he selected tangential vectyyis the tangential unit vector
expression suffices for the scope of this paper. To find the g the surface projection of the director:. In nematic
nematic capillarity vectog we use definition(1): surfaces the principal frameg(b,) is defined by the inter-
section of thek-n plane and the surface. Thus nematic sur-
&nk)=Vryk], (93 faces may decreapse the surface energy by contraction or by
rotation of the unit normal around an axis that is perpendicu-
r=rk, (9b) lar to the surface projection of the director. The nematic sur-

. . . face behavior is isotropic only if
where the directon in the surface energy is kept constant: P y

y(k). Computing the gradient afy usingr=r(r,k) andk dy
=Kk(r) gives &= Nank) 0, (14
_ _ o, dy_ which is possible whem;=0 or when dy/[d(n-k)]=0.
dnio=viryk] Yo T ar vkHls dk’ (10 Whenn is parallel tok, the”surface is isotropic. The directors
n* corresponding to the stable extremayadre known as the
where the following results have been used: easy axes and afé) planar,y,>0, nj=1; and(ii) homeo-
tropic, y,<<0. Figure 4a) showsk, n, ty, by, & — &, vectors
ﬁ_r:k (119 for a planar easy axis. Rotation kfaroundb, in the direc-
a7 tion imposed by— ¢, gives the fastest rate of decrease in

anchoring energy; in this case dy/d6>0. Figure 4b)
showsk, n, tg, by, & —§& vectors for a homeotropic easy
axis. Rotation ofk aroundbg in the direction imposed by

— & gives the fastest rate of decrease in anchoring energy; in
Thus the components of the capillarity vector for nematicthis case—dy/d6<0.

(11b

dy_l dy &k_l dy(1
ar sk o k)

surfaces and interfaces are For a nematic surface the components of the surface ten-
sion force per unit lengthg, acting on a line element ori-
dy dy ented along a unit tangent vectoare
& =k, §\:|s'd—k=(|s'n)d(n—,k)=7’”u’ (12
o,=§ XI=y(kX)=y», (15
wherey’=dy/d(n-k). To putg, in the Cahn-Hoffman form d
we let # be the angle between the unit nornialand the o =§X|= ﬁn“m_ (16)
directorn, and get (n-k)
dy [dy Thus the normal surface tension force per unit length acting
&=lg W:<ﬁ) 0 (133  on a line oriented along is zero only if §=0 or if njil.
ma Barring these possibilities, a line on a nematic surface is
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TN foy,
A FIG. 5. () Schematic of the
\N bending stress cylindéf® in rela-
tion to the main surface vectors
y and main frametg,bg). (b) Sche-

matic of the single principal bend-
ing stress on a surface element
() oriented along the principal frame
(to,bg). (c) Schematic of the two
bending stresses on a surface ele-
ment oriented along a nonprinci-
pal frame(t,b).

9=0 @ =cos(t-t,)
() ©
subjected to a normal force, unlike isotropic surfaces. This T=¢£, (183

normal force plays a role in the balance of forces at contact
lines and triple lines, where if one of the intersecting surfaces

is nematic, the classical Neumann tangential capillary vector W=kls—1gk, (18b)
equation must be augmented to include the normal vector

d
force o, [12] T'=gls, To=—gk=grtok. (189

IV. CORRESPONDENCE OF THE CAHN-HOFFMAN
CAPILLARITY VECTOR AND THE ELASTIC SURFACE

The bending coefficierd y/d @ is the fastest rate of decrease
STRESS TENSOR

in anchoring energy, and in the principal frarfié, has only

The previous model of interfacial nematostafitg,13 is ~ one component. Figure(& shows the bending stress cylin-
based on the elastic surface stress tefisdiis fundamental der.k, n, to, bo, and|dy/d6|. The arrows denote the direc-
quantity defines the capillary pressyg, p.=—(V-T)-Kk, tion and magnitude of the bending stresses acting on a sur-
and the surface tension foreeon a surface line alongo  face patch whose orthogonal frame is any arbitrary
=»-T, where vLl. The expression of the elastic surface ort.hogonal(t,b). Thg magnitude of the bending stress at any
stress tensdF is found basically by noting thag=y(k) and ~ Point on the circle is
by using the identityl =1- T. The surface elastic stress ten-

sor T is given by the usual 2 symmetric interfacial ten- o dv _dy
sion contributionT" (normal stressésand the 2 3 aniso- tTo k= d_g(t'tO)_ dg ©0s¢ (19)
tropic contributionT® (bending stressgs
ay whereg is the angle betweety andt. Figure §b) shows that
T=T"+T° T'=qlg, TP=-I, [W k} =—7y'nk. when the frame istg,by) there is only one compone(ytrin-

17 cipal bending stress of magnituddy/d0|) acting on the
surface direction normal t. Figure 5c) shows that for any
Comparing Egs(12), (13), and(17) we find that the corre- other (t,b) frame there are two bending stress components,
spondence between the surface stress téhsord the Cahn-  whose magnitudes depend on the rotation angle between the
Hoffman capillarity vectorf is principal frame and thét,b) frame.
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V. APPLICATION OF CAPILLARY VECTOR
THERMODYNAMICS: INTERFACE CONFIGURATION
AT TRIPLE LINES

The interface configuration at the junction of three flat
fluid isotropic interfaces, characterized by interfacial ten-

sions{y"}; i=1, 2, 3 is given by the Neumann equation
[16]

2 o’=0, (208

Uﬁi):§LX|:,y(i)(k(i)x|):,y(i)v(i)’ (20b)

PHYSICAL REVIEW E 66, 021704 (2002

2 a=0,

o= 05| = 5D p 4 g5 = D)D) (22
(i)
+ mm”xl).
Introducing the junction sum of capillary vectafs
2=+ @4 £0) (23)
it follows that the nematic configuration obeys
Z 1 =(8V+ 82+ &9).1,=0, I,=1—-1l, (24

which is the generalization of the Neumann equation for

where no line tension energy, long range, and surfac@ematic triple lines.

anisotropies effects are taken into account, higlthe unit

vector along the straight triple line. In this case all the forces
at the triple line are tangential to the three interfaces. Defin-

ing the three angles that span each phase@s i=1, 2, 3,
wherew ) is the dihedral angle limited by interface 2 and 3,
gives the interface configuration equation

(1)

(2) (3)

YV Py
sing?  sinw®  sinw®"

(21)

VI. CONCLUSIONS

In summary, the Cahn-Hoffman capillarity vector thermo-
dynamic formalism for anisotropic surfaces has been adapted
to nematic liquid crystal surfaces, and its connection with the
classical stress tensor model has been established. The Cahn-
Hoffman vector formalism offers a clear and tractable meth-
odology to analyze capillarity forces in nematic surfaces.
The existence of rotational forces and their connection to
gradients of anchoring energy and bending stresses have
been established. The potential minimization of anchoring

If the three phases are anisotropic, the generalization of thenergy leads to surface rotations and bending stresses. The

Neumann equation igl4]
2 ol=0,
|

oV =g0x|=gx1+ £Vx 1=y D4 gD,

nematic Cahn-Hoffman capillarity vector is an efficient tool

to analyze shape selection and surface patterning processes
in liquid crystals. The application of the formalism to a
straight nematic triple line shows that the interface configu-
ration should be such that the projection of the sum of the
three capillarity vectors on a plane normal to the contact line
vanisheq16].
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